Hölder continuity of solutions to the Monge - Ampère equations on compact Kähler manifolds

نویسنده

  • Nguyen Quang Dieu
چکیده

X ω = 1. An upper semicontinuous function φ : X → [−∞,+∞) is called ω-plurisubharmonic (ω-psh) if φ ∈ L(X) and ωφ := ω + dd φ ≥ 0. By PSH(X,ω) (resp. PSH(X,ω)) we denote the set of ω-psh (resp. negative ω-psh) functions on X . The complex Monge-Ampère equation ω u = fω n was solved for smooth positive f in the fundamental work of S. T. Yau (see [Yau]). Later S. Kolodziej showed that there exists a continuous solution if f ∈ L(ω), f ≥ 0, p > 1 (see [Ko2]). Recently in [Ko5] he proved that this solution is Hölder continuous in this case (see also [EGZ] for the case X = CP). In Corollary 1.2 in [DNS] the authors have shown that the measure ω u is moderate if u is Hölder continuous. The main result is the following theorem which give a partial answer to the converse problem:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continuity of the Complex Monge-Ampère Operator on Compact Kähler Manifolds

We prove several approximation theorems of the complex Monge-Ampère operator on a compact Kähler manifold. As an application we give a simple proof of a recent result of Guedj and Zeriahi on a complete description of the range of the complex Monge-Ampère operator in E(X,ω), which is the class of ω-plurisubharmonic functions with vanishing complex Monge-Ampère mass on all pluripolar sets. We als...

متن کامل

Complex Monge–Ampère equations and totally real submanifolds

We study the Dirichlet problem for complex Monge–Ampère equations in Hermitian manifolds with general (non-pseudoconvex) boundary. Our main result (Theorem 1.1) extends the classical theorem of Caffarelli, Kohn, Nirenberg and Spruck in Cn. We also consider the equation on compact manifolds without boundary, attempting to generalize Yau’s theorems in the Kähler case. As applications of the main ...

متن کامل

Complex Monge-ampère Equations on Hermitian Manifolds

We study complex Monge-Ampère equations in Hermitian manifolds, both for the Dirichlet problem and in the case of compact manifolds without boundary. Our main results extend classical theorems of Yau [43] and Aubin [1] in the Kähler case, and those of Caffarelli, Kohn, Nirenberg and Spruck [9] for the Dirichlet problem in C n . As an application we study the problem of finding geodesics in the ...

متن کامل

Boundary Regularity for Solutions to the Linearized Monge-ampère Equations

We obtain boundary Hölder gradient estimates and regularity for solutions to the linearized Monge-Ampère equations under natural assumptions on the domain, Monge-Ampère measures and boundary data. Our results are affine invariant analogues of the boundary Hölder gradient estimates of Krylov.

متن کامل

Prescribing Ricci Curvature on Complexified Symmetric Spaces

The complexification of the compact group G is the group G whose Lie algebra is the complexification of the Lie algebra g of G and which satisfies π1(G ) = π1(G). The complexification G/K of G/K can be then identified (G-equivariantly) with the tangent bundle of G/K. We also remark that the Kähler form obtained in the Theorem is exact. This result has been proved in [9] for symmetric spaces of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009